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Introduction

Consider inverse scattering for a hyperbolic equation

(07 + LgL ] )u(t,x) =0
u(0,x) = b(x) Oru(0,x) =0

with first order waveop. Lg affine in reflectivity g as

L;-u =/cV[Jcu] + quu

Coinciding sources and receivers yield data at times
t=jrforj=0,1,...,2n— 1.

D; = (b(x), u(jr, x)) = <b(x), cos(jﬂ /Lng) b(x)>

In a MIMO setting b(x) = (b()(x), ..., b{™(x)) with m sources/receivers

Problem
1. Find reflectivity g(x) from backscattering data D, i.e. invert g — D
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Outline of approach

1. Construct a ROM £§OM from the measured data that has the
structure of a wave operator

» Data interpolation

D = (b(x), cos(jr\/LeL] ) b(x))
— <bROM’ cos<j7\/W) bROM>

> Sparsity pattern of LEM should resemble discretization

» Regularization on level of the ROM

2. Interpret ROM LEOM as a wave operator (affine in q)
3. Invert for the reflectivity by minimizing ROM mismatch

oL (g°) = HE?OM — EESOMH + regularization
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Comparison to standard imaging (FWI)

FWI

1. Objective function data
mismatch

2. Highly nonlinear (many
iterations)

3. Difficult to regularize
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ROM Approach

1.

Objective function ROM
missmatch

Close to linear due to ROM
transform

Intrinsic regularization
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The Propagator

» We define the Propagator Py = cos (T1 /LquT>
» Field can be expressed in Chebyshev polynomials of first kind of Pq

u(jr,x) = cos(jr@) b= cos(jarccos [cos(r@)}) b
= cos(jarccos [Pq]) b = T;(P4)b
» We move from continuous time
D%u(t,x) = —LquTu(t,x) u(0,x) = b(x) J:u(0,x) =0 (1)
to a discrete time equation u; = u(j7, x) (Chebyshev recursion)
uip1 =2Pquj —uj_; ug=b(x) u;=u_ (2)
» Note the similarity of (2) to discretizing 92 in (1)

Ujt1—2uj+uj_g 2
’ ——— = 5 (Pg—T)u; = —LqL (3)

72
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Galerkin projection - ROM

» Project (2) onto the solutions at the first n times
U(x) = (up(x),u1(x),...,us—1(x))
» Expand u; = U(x)g; and use the Galerkin condition to find
(U,U)gj1 = 2(U, PgU)g; — (U, U)gj 1
go=e1 gi=g1 DfM=gl(UU)g;
» This defines our ROM with
Mgj+1 = 25g; — Mgj—1

Propositions

1. The data obtained from the ROM interpolates the true data
DFM=p; j<2n-1

2. We can find M and S from the data D;
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Reduced order model propagator operator |

Mgj 11 = 25g; — Mgj 1

v

Cholseky factorize M = RTR to orthogonalize the basis V = UR™!

> Introduce ROM field uf" = Rg; = (UR™!, uj)
WROM _ oR-TSR~1,ROM _ yROM | ROM _ Ro, _ ,ROM
» This defines the ROM propagator operator PfOM =R "SR!
> R’;OM is a projection of the propagator P, onto the orthogonalized

snapshots V(x) = U(x)R™!
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Reduced order model propagator operator |
Mgj 11 = 25g; — Mgj 1

» Cholseky factorize M = R R to orthogonalize the basis V = UR™!
> Introduce ROM field uf" = Rg; = (UR™!, uj)

ROM _ 2R7TSR71uJROM _ UROM

uk9 RO} ROM _ R, — HLROM

Ug

» This defines the ROM propagator operator PfOM =R "SR!

> PfOM is a projection of the propagator P, onto the orthogonalized
snapshots V(x) = U(x)R™!
» Elements of U are strongly dependent on g
» Elements of V are localized and weakly dependent on g
» = Known background (g = 0) snapshots V(x) ~ V(x) provide
embedding of ROM into physical space
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Reduced order model propagator operator Il

ROM _ »pROM ROM _
q

u_j+1 — U',OlM ugOM — Re1 _ bROM

J J

> Defines data DFOM = (bROM) T T;(PFOM)pROM

» Interpretation as discrete-time, discrete-space WEQ

uROM _ o ,ROM _ | ,ROM 5
Jj+1 J Jj-1 _7(| . PROM)UROM _ _ﬁROM(ﬁROM)TuROM
7-2 - 7-2 q J - q q J
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Reduced order model propagator operator Il

ROM __ ROM , ROM ROM ROM __ __ wWROM
UJ'+1 = 27)(] UJ' —uia Up = Re1 =b

> Defines data DFOM = (bROM) T T;(PFOM)pROM

» Interpretation as discrete-time, discrete-space WEQ
ROM _ 9 ,ROM _ ,ROM

u; u 2
Jj+1 J j-1 4  pROMY ROM _ _ pROM;p,rROM\T ROM
72 - 7.2(| 7Dq )uj - 'Cq (ﬁq ) uj

» Compare to to continuous-time, continuous-space WEQ
2 T
dru(t,x) = —LqLg u(t,x)

> £§OM can be interpreted as a discretization of L, absorbing O(72)

error from time discretion
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Interpolation Proof, DFOV = D; j<2n—1

j<n-1
» For j < n—1 the true field is in the span of U(x)
» The Galerkin condition is unique and g; = ej;1 (block identity matrix)
j<2n-2
» The field is a (Chebyshev) polynomial in Pq and Py = 73;—
uj = Tj(Pq)b
» For I =1,...,n— 1 we use the Chebyshev identity
To-141=2Tn-1T1 — Tjn—1-1]

I:)n—l—i-/ = <b7777—1+/(7)q)b>
=2 <77171(7Dq)b>7-/(73q)b> - <b>7\-n—1—l|(73q)b>

=2 (up_1,u;) — (b, uj,_1_y)
— 2O TV — TN
= <b,777,1+/(7750M)b> = D,'?,Oll\i/

» Similar prove for j =2n—1
UMICH (Jorn Zimmerling) 9 /32



Finding M and S from the Data
» The Mass matrix is defined as M = (U, U)
(M)it1j1 = (ui up)

= (TH(P)b. Ti(Po)b) = 5 (b, 2Ti(P)Ti(P)b)

= 2 (b, [T:4j(Pg) + Ty (Po)lb)

1
= 5(Disj + D)
» Similar result can be obtained for S
» With noise M and S need to be regularized such that
1. M is positive definite
2. The pencil (M, S) has a maximum eigenvalue <1
(Guarantees that PROM is contractive operator)

» Basically Lowner inner products in the time domain
» Next: V(x) = U(x)R™! independence of g

UMICH (Jorn Zimmerling) 10 / 32



Orthogonalized Snapshot matrix - 1D

background medium Snapshot matrix Uy(z) Cholesky Factor Ry Orthogonalized Snapshots Vo(x) = Up(2)R; !
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» Orthogonalized Snapshots approximately independent of medium
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Orthogonalized Snapshot matrix - 2D
q
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Snapshots plotted for a single source
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Summary ROM

» From the data we can obtain a ROM that explains the data

yROM _ 5 ,ROM _ |,ROM
J+1 J =1 _ _ﬁROM(EROM)TuROM
7-2 - q q J

v

Size of the ROM is dictated by the data
The ROM lives in a basis of orthogonalized snapshots UR™!
(localization)
LEOM(LEOMYT block tridiagonal

ROM
Lq

v

v

v

is nearly affine in the reflectivity g
ROM ROM
Lg7" — LG

v

close to linear in g [1]

I 5.7 T
|~ Pg=1- cos<7'\/££T> ~—or2LLT +O(3)

[1] LiLiANA BORCEA, VLADIMIR DRUSKIN, ALEXANDER MAMONOV AND MIKHAIL ZASLAVSKY, Untangling the nonlinearity in
inverse scattering with data-driven reduced order models, Inverse Problems, Volume 34, Number 6

UMICH (Jorn Zimmerling) 13 /32



Inversion Method
» Minimize ROM mismatch rather than data mismatch

0B (q°) = HE50M - E§OMHF + regularization

s

» We assume a kinematic model ¢y and an initial guess go = 0 to
obtain LEOM
Parametrize the reflectivity as

v

NS
a*(x) = > G oi(x)
j=1

» Use (approximate) affine relationship (approximate as Vo ~ V)
NS
ROM __ ,ROM ROM ROM
ﬁqs ~ ‘CO + Z qjs(ﬁ@ — ‘CO )
j=1

v

The coefficients g; follow from a least-squares problem
Approach can be iterated
How to choose ¢;(x)? = Based on Resolution

vV Yy
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Choosing ¢;(x)

» The resolution of imaging method depends on location in Q

» A point like perturbation ¢;(x) at the point x; causes a local
perturbation of the diff.op. AL(6;) such that

. ATy = ) s e
AL(6;)AL(6;) " p(x) 4 [Vd;(x)[“p(x)

» Idea: Lift the perturbation AL’ROM that d; causes in the ROM into
the physical space using the orthogonallzed basis function of the
background Vy(x)

Wj(x) = [Vo(x)ALEM(ALEM)TV] (x)

» We do a partition of unity using these point spread function

» If we need to regularize our ROM due to noisy data, it directly
impacts this resolution
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Numerical experiments

range

50 100 150
Cross range

v

50 source & receiver pairs

v

Derivative of Gaussian pulse with Apeox = 9 dimensionless units.
5% cut-off at Acyr = 4.5 units
110 timesteps

v

v

v

Constant background velocity



Resolution Analysis - Defining search space

0 0
P Bttt ey 20}
S | Emi g e o 3
g A0 = e e N e e = 40
< <
= | e W W W T W T T T T e W -
[ e 60 F
sol— : : 80— : ‘
50 100 150 50 100 150

crossrange crossrange

» Centers of basis functions ¢;

> E les of boi q used after a partition of unity of
xamples of point sprea the PSFs

functions V;

» Cross range resolution decreases min ||cr||1, such that

away from array. ‘1 — Zaj\llj < tol,
J
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time step

5 10 15 20 25 30 35 40 45 50
receiver

» Data collected by all receivers after
firing 25 source.
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time step

5 10 15 20 25 30 35 40 45 50
receiver

» Data if the map g — D(t) were
linear
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Classical Least squares Data-misfit

50 100 150
Cross range

» Data least squares ||[D — D7°%||

» (truncated SVD for regularization)




Least squares Born Data

50 100 150
cross range

50 100 150
Cross range

» Data least squares if the map g — D were linear



50 100 150

Cross range

» One iterate of nonlinear LS for ||£§OM - £§’SOM||,:

» Qualitative agreement




50 100 150
Cross range

» Multiple reflections hold information, i.e. better image than with
linear data

» Quantitative agreement



Cracks Example - added noise
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» Example with 5% white Background speed
measurements noise
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» Gaussian pulse with
Apeak = 10 — 15 units
» Width of cracks 2 units



Cracks Example Measurements

Measured Nonlinear Data
)

Time Step

5 10 15 20 25 30
Receiver Index
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Cracks lteration 1




Cracks lteration 2
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Cracks lteration 3
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Cracks lteration 4
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Cracks lteration 5
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Reconstruction metrics

1 T
0.8
> All cracks are recovered and well )
207
seperated i
206
o £
» Less sensitivity far away from $0s
array oal
» Convergence in 3 iterations 0l
0.2 -
0 1 2 3 4 5 6
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Conclusions

1. The objective function
ROM
1L = LesllF

is close to linear in the unknown reflectivity q. Few iterations are
needed to recover g from this functional

2. Intrinsic regularization via the ROM formulation

3. ROM: Pure linear algebraic method on the level of the data

Reduced Order Model Approach to Inverse Scattering, .. BORCEA, V.
DrUSKIN, A.V. MAMONOV, M. ZASLAVSKY, J. ZIMMERLING, to appear in
SIAM Journal on Imaging Sciences, 2020. Preprint: arXiv:1910.13014 [math.NA]
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