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Introduction

Consider inverse scattering for a hyperbolic equation

(∂2t + LqL
T
q )u(t, x) = 0

u(0, x) = b(x) ∂tu(0, x) = 0

with first order waveop. Lq affine in reflectivity q as

LTq u =
√
c∇[
√
cu] +

c

2
∇qu
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Coinciding sources and receivers yield data at times
t = jτ for j = 0, 1, . . . , 2n − 1.

 

Ωinac

 

ac

Dj = 〈b(x),u(jτ, x)〉 =
〈

b(x), cos
(
jτ
√
LqLTq

)
b(x)

〉
In a MIMO setting b(x) = (b(1)(x), ..., b(m)(x)) with m sources/receivers

Problem

1. Find reflectivity q(x) from backscattering data D, i.e. invert q 7→ D
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Outline of approach

1. Construct a ROM LROM
q from the measured data that has the

structure of a wave operator
I Data interpolation

D =
〈

b(x), cos
(
jτ
√
LqLTq

)
b(x)

〉
=

〈
bROM , cos

(
jτ

√
LROM
q LROM

q
T
)

bROM

〉
I Sparsity pattern of LROM

q should resemble discretization
I Regularization on level of the ROM

2. Interpret ROM LROM
q as a wave operator (affine in q)

3. Invert for the reflectivity by minimizing ROM mismatch

OLS(qs) = ||LROM
q − LROM

qs ||+ regularization
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Comparison to standard imaging (FWI)

FWI

1. Objective function data
mismatch

2. Highly nonlinear (many
iterations)

3. Difficult to regularize

ROM Approach

1. Objective function ROM
missmatch

2. Close to linear due to ROM
transform

3. Intrinsic regularization
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The Propagator

I We define the Propagator Pq = cos
(
τ
√

LqLTq

)
I Field can be expressed in Chebyshev polynomials of first kind of Pq

u(jτ, x) = cos
(
jτ
√
LqLTq

)
b = cos

(
jarccos

[
cos
(
τ
√
LqLTq

)])
b

= cos(jarccos [Pq]) b = Tj(Pq)b

I We move from continuous time

∂2t u(t, x) = −LqLTq u(t, x) u(0, x) = b(x) ∂tu(0, x) = 0 (1)

to a discrete time equation uj = u(jτ, x) (Chebyshev recursion)

uj+1 = 2Pquj − uj−1 u0 = b(x) u1 = u−1 (2)

I Note the similarity of (2) to discretizing ∂2t in (1)

uj+1 − 2uj + uj−1
τ2

=
2

τ2
(Pq − I)uj = −LqLTq uj (3)
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Galerkin projection - ROM

I Project (2) onto the solutions at the first n times

U(x) = (u0(x),u1(x), . . . ,un−1(x))

I Expand uj ≈ U(x)gj and use the Galerkin condition to find

〈U,U〉gj+1 = 2〈U,PqU〉gj − 〈U,U〉gj−1
g0 = e1 g1 = g−1 DROM

j = gT0 〈U,U〉gj
I This defines our ROM with

Mgj+1 = 2Sgj −Mgj−1

Propositions

1. The data obtained from the ROM interpolates the true data

DROM
j = Dj j ≤ 2n − 1

2. We can find M and S from the data Dj
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Reduced order model propagator operator I

Mgj+1 = 2Sgj −Mgj−1

I Cholseky factorize M = RTR to orthogonalize the basis V = UR−1

I Introduce ROM field uROM
j = Rgj =

〈
UR−1,uj

〉
uROM
j+1 = 2R−TSR−1uROM

j − uROM
j−1 uROM

0 = Re1 = bROM

I This defines the ROM propagator operator PROM
q = R−TSR−1

I PROM
q is a projection of the propagator Pq onto the orthogonalized

snapshots V(x) = U(x)R−1

I Elements of U are strongly dependent on q
I Elements of V are localized and weakly dependent on q
I ⇒ Known background (q = 0) snapshots V0(x) ≈ V(x) provide

embedding of ROM into physical space
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Reduced order model propagator operator II

uROM
j+1 = 2PROM

q uROM
j − uROM

j−1 uROM
0 = Re1 = bROM

I Defines data DROM
j = (bROM)TTj(PROM

q )bROM

I Interpretation as discrete-time, discrete-space WEQ

uROM
j+1 − 2uROM

j − uROM
j−1

τ2
= − 2

τ2
(I− PROM

q )uROM
j = −LROM

q (LROM
q )TuROM

j

I Compare to to continuous-time, continuous-space WEQ

∂2t u(t, x) = −LqLTq u(t, x)

I LROM
q can be interpreted as a discretization of Lq absorbing O(τ2)

error from time discretion
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Interpolation Proof, DROM
j = Dj j ≤ 2n − 1

j ≤ n − 1
I For j ≤ n − 1 the true field is in the span of U(x)
I The Galerkin condition is unique and gj = ej+1 (block identity matrix)

j ≤ 2n − 2
I The field is a (Chebyshev) polynomial in Pq and Pq = PT

q

uj = Tj(Pq)b
I For l = 1, . . . , n − 1 we use the Chebyshev identity
Tn−1+l = 2Tn−1Tl − T|n−1−l |

Dn−1+l = 〈b, Tn−1+l(Pq)b〉
= 2 〈Tn−1(Pq)b, Tl(Pq)b〉 −

〈
b, T|n−1−l |(Pq)b

〉
= 2 〈un−1,ul〉 −

〈
b,u|n−1−l |

〉
= 2(uROM

n−1 )TuROM
l − bROMuROM

|n−1−l |

=
〈

b, Tn−1+l(PROM
q )b

〉
= DROM

n−1+l

I Similar prove for j = 2n − 1
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Finding M and S from the Data

I The Mass matrix is defined as M = 〈U,U〉

(M)i+1,j+1 = 〈ui ,uj〉

= 〈Ti (Pq)b, Tj(Pq)b〉 =
1

2
〈b, 2Ti (Pq)Tj(Pq)b〉

=
1

2

〈
b, [Ti+j(Pq) + T|i−j |(Pq)]b

〉
=

1

2
(Di+j + D|i−j |)

I Similar result can be obtained for S
I With noise M and S need to be regularized such that

1. M is positive definite
2. The pencil (M,S) has a maximum eigenvalue ≤ 1

(Guarantees that PROM is contractive operator)

I Basically Löwner inner products in the time domain

I Next: V(x) = U(x)R−1 independence of q
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Orthogonalized Snapshot matrix - 1D

I Orthogonalized Snapshots approximately independent of medium
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Orthogonalized Snapshot matrix - 2D
q c

U|q=0 V|q=0 U V

Array with m = 50 sensors ×
Snapshots plotted for a single source ◦
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Summary ROM

I From the data we can obtain a ROM that explains the data

uROM
j+1 − 2uROM

j − uROM
j−1

τ2
= −LROM

q (LROM
q )TuROM

j

I Size of the ROM is dictated by the data

I The ROM lives in a basis of orthogonalized snapshots UR−1

(localization)

I LROM
q (LROM

q )T block tridiagonal

I LROM
q is nearly affine in the reflectivity q

I LROM
q − LROM

0 close to linear in q [1]

I− Pq = I− cos
(
τ
√
LLT

)
≈ −1

2
τ2LLT +O(

τ4

4!
)

[1] Liliana Borcea, Vladimir Druskin, Alexander Mamonov and Mikhail Zaslavsky, Untangling the nonlinearity in
inverse scattering with data-driven reduced order models, Inverse Problems, Volume 34, Number 6
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Inversion Method
I Minimize ROM mismatch rather than data mismatch

OLS(qs) = ||LROM
q − LROM

qs ||F + regularization

I We assume a kinematic model c0 and an initial guess q0 = 0 to
obtain LROM

0
I Parametrize the reflectivity as

qs(x) =
Ns∑
j=1

qsj φj(x)

I Use (approximate) affine relationship (approximate as V0 ≈ V)

LROM
qs ≈ LROM

0 +
Ns∑
j=1

qsj (LROM
φj

− LROM
0 )

I The coefficients qj follow from a least-squares problem
I Approach can be iterated
I How to choose φj(x)? ⇒ Based on Resolution
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Choosing φj(x)

I The resolution of imaging method depends on location in Ω

I A point like perturbation δj(x) at the point xj causes a local
perturbation of the diff.op. ∆L(δj) such that

∆L(δj)∆L(δj)
Tϕ(x) =

c2(x)

4
|∇δj(x)|2ϕ(x)

I Idea: Lift the perturbation ∆LROM
δj

that δj causes in the ROM into
the physical space using the orthogonalized basis function of the
background V0(x)

Ψj(x) =
[
V0(x)∆LROM

δj
(∆LROM

δj
)TVT

0 (x)
]

I We do a partition of unity using these point spread function

I If we need to regularize our ROM due to noisy data, it directly
impacts this resolution
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Numerical experiments

I 50 source & receiver pairs

I Derivative of Gaussian pulse with λpeak = 9 dimensionless units.

I 5% cut-off at λcut = 4.5 units

I 110 timesteps

I Constant background velocity
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Resolution Analysis - Defining search space

I Examples of point spread
functions Ψj

I Cross range resolution decreases
away from array.

I Centers of basis functions φj
used after a partition of unity of
the PSFs

min ‖α‖1, such that∣∣∣1−∑
j

αjΨj

∣∣∣ ≤ tol,
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Data

I Data collected by all receivers after
firing 25th source.

I Data if the map q 7→ D(t) were
linear
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Classical Least squares Data-misfit

I Data least squares ||Dmeas
q −Dmodel

qs ||F
I (truncated SVD for regularization)
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Least squares Born Data

I Data least squares if the map q 7→ D were linear
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Iterative imaging with ROM it:1

I One iterate of nonlinear LS for ||LROM
q − LROM

qs ||F
I Qualitative agreement
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Iterative imaging with ROM it:5

I Multiple reflections hold information, i.e. better image than with
linear data

I Quantitative agreement

UMICH (Jörn Zimmerling) 22 / 32



Cracks Example - added noise
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I Example with 5% white
measurements noise

I Gaussian pulse with
λpeak = 10− 15 units

I Width of cracks 2 units
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Cracks Example Measurements

Measured Nonlinear Data
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Cracks Iteration 1

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200 -2

-1.5

-1

-0.5

0

0.5

UMICH (Jörn Zimmerling) 25 / 32



Cracks Iteration 2
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Cracks Iteration 3
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Cracks Iteration 4
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Cracks Iteration 5
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Reconstruction metrics

I All cracks are recovered and well
seperated

I Less sensitivity far away from
array

I Convergence in 3 iterations
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Conclusions

1. The objective function

||LROM
q − Lqs ||F

is close to linear in the unknown reflectivity q. Few iterations are
needed to recover q from this functional

2. Intrinsic regularization via the ROM formulation

3. ROM: Pure linear algebraic method on the level of the data

Reduced Order Model Approach to Inverse Scattering, L. Borcea, V.

Druskin, A.V. Mamonov, M. Zaslavsky, J. Zimmerling, to appear in

SIAM Journal on Imaging Sciences, 2020. Preprint: arXiv:1910.13014 [math.NA]
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